New additive manufacturing process developed by university of sheffield mitigates limitations of laser-based 3d printing


Many 3D printing technologies involve the use of lasers to produce both metal and plastic parts. If you’re familiar with additive manufacturing, you’re probably at least somewhat familiar with the most common laser-based 3D printing processes. In the case of stereolithography (SLA), a laser is used to cure, or harden, liquid resin material into a solid part. In selective laser sintering (SLS) and selective laser melting (SLM), the laser sinters or melts powder into a solid part. Pretty cool, yes – but laser 3D printing processes still have their limits.

In the case of powder-based 3D printing, a mirror is used to deflect a single laser, allowing the laser to hit different areas of the powder bed. The fact that only one laser is used, however, limits the speed that parts can be printed – it’s as if the parts are being drawn, and that’s going to take some time. But researchers at the University of Sheffield have developed a new process that’s less like drawing, and more like painting with several large brushes at one time.